On Riesz-Caputo Formulation for Sequential Fractional Variational Principles
نویسندگان
چکیده
and Applied Analysis 3 The left Caputo fractional derivative is C aD f t 1 Γ n − α ∫ t a t − τ n−α−1 ( d dτ )n f τ dτ, 2.6 while the right Caputo fractional derivative is
منابع مشابه
Fractional variational problems with the Riesz-Caputo derivative
In this paper we investigate optimality conditions for fractional variational problems, with a Lagrangian depending on the Riesz-Caputo derivative. First we prove a generalized Euler-Lagrange equation for the case when the interval of integration of the functional is different from the interval of the fractional derivative. Next we consider integral dynamic constraints on the problem, for sever...
متن کاملLaplace Variational Iteration Method for Modified Fractional Derivatives with Non-singular Kernel
A universal approach by Laplace transform to the variational iteration method for fractional derivatives with the nonsingular kernel is presented; in particular, the Caputo-Fabrizio fractional derivative and the Atangana-Baleanu fractional derivative with the non-singular kernel is considered. The analysis elaborated for both non-singular kernel derivatives is shown the necessity of considering...
متن کاملGauge Symmetries in Fractional Variational Problems
We prove a second Noether theorem for Lagrangian densities with fractional derivatives defined in the Riesz–Caputo sense. An application to the fractional electromagnetic field is given. AMS Subject Classifications: 49K05, 26A33.
متن کاملCape Verde Praia , Santiago , Cape Verde
We prove a Noether’s theorem for fractional variational problems with Riesz-Caputo derivatives. Both Lagrangian and Hamiltonian formulations are obtained. Illustrative examples in the fractional context of the calculus of variations and optimal control are given.
متن کاملTime-fractional Klein-Gordon equation: formulation and solution using variational methods
This paper presents the formulation of time-fractional Klein-Gordon equation using the Euler-Lagrange variational technique in the Riesz derivative sense and derives an approximate solitary wave solution. Our results witness that He’s variational iteration method was very efficient and powerful technique in finding the solution of the proposed equation. The basic idea described in this paper is...
متن کامل